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Introduction: Elevated red cell distribution width (RDW) has been associated with
a range of health outcomes. This study aims to examine prognostic and etiological
roles of RDW levels, both phenotypic and genetic predisposition, in predicting
cardiovascular outcomes, diabetes, chronic kidney disease (CKD) and mortality.
Methods: We studied 27,141 middle-aged adults from the Malmö Diet and Cancer
study (MDCS) with a mean follow up of 21 years. RDW was measured with a
hematology analyzer on whole blood samples. Polygenic scores for RDW
(PGS-RDW) were constructed for each participant using genetic data in MDCS
and published summary statistics from genome-wide association study of RDW
(n= 408,112). Cox proportional hazards regression was used to assess
associations between RDW, PGS-RDW and cardiovascular outcomes, diabetes,
CKD and mortality, respectively.
Results: PGS-RDW was significantly associated with RDW (Pearson’s correlation
coefficient = 0.133, p < 0.001). RDW was significantly associated with incidence
of stroke (hazard ratio (HR) per 1 standard deviation= 1.06, 95% confidence
interval (CI): 1.02–1.10, p= 0.003), atrial fibrillation (HR = 1.09, 95% CI: 1.06–1.12,
p < 0.001), heart failure (HR = 1.13, 95% CI: 1.08–1.19, p < 0.001), venous
thromboembolism (HR = 1.21, 95% CI: 1.15–1.28, p < 0.001), diabetes (HR = 0.87,
95% CI: 0.84–0.90, p < 0.001), CKD (HR = 1.08, 95% CI: 1.03–1.13, p= 0.004)
and all-cause mortality (HR = 1.18, 95% CI: 1.16–1.20, p < 0.001). However,
PGS-RDW was significantly associated with incidence of diabetes (HR = 0.96,
95% CI: 0.94–0.99, p= 0.01), but not with any other tested outcomes.
Discussion: RDW is associated with mortality and incidence of cardiovascular
diseases, but a significant association between genetically determined RDW and
incident cardiovascular diseases were not observed. However, both RDW and
PGS-RDW were inversely associated with incidence of diabetes, suggesting a
putative causal relationship. The relationship with incidence of diabetes needs to
be further studied.
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Introduction

Red cell distribution width (RDW) is a measure of the

heterogeneity of the red cell volumes, which is commonly used

for subclassifying different types of anaemia clinically. High

RDW has been associated with several adverse health events,

such as incidence of stroke (1), coronary events (CE) (2, 3),

diabetes (4) and all-cause mortality (5) in general populations.

Several possible explanations for the relationship between RDW

and health outcomes have been proposed, including

inflammation (6), oxidative stress and altered erythrocytes

survival (7, 8). Nevertheless, owing to the inherent limitations of

observational studies, the causal relationships between RDW and

health outcomes remain uncertain.

In the past decades, large-scale genome-wide association studies

(GWAS) have identified hundreds of genetic variants that are

associated with cardiometabolic diseases (9) and with RDW

(10, 11). Based on that, Mendelian randomization (MR) studies

are able to conduct examinations of the causal relationship

between RDW, venous thromboembolism (VTE) (12) and

haemorrhagic strokes (13). However, the application of MR

analysis has often been limited to genome-wide significant

variants, potentially leading to decreased statistical power due to

the relatively small contribution of individual genetic variants in

explaining the variance of complex traits (14). On the other hand,

polygenic score (PGS), which aggregate the cumulative effects of

many genetic variants, is able to capture an increased probability

of disease with reasonable statistical power (14–16). PGS is

becoming popular in predicting complex diseases such as type-2

diabetes, coronary artery disease and inflammatory bowel disease

(17). Association between PGS for RDW and cardiovascular

diseases has also been examined in an interesting cross-sectional

study suggesting the possibility of using genetic susceptibility to

infer causal relationships (18).

Our objective was to investigate the relationship between

phenotypically measured and genetically determined RDW and

various health outcomes, including diabetes, incidence of chronic

kidney disease (CKD), a range of cardiovascular diseases such as

atrial fibrillation (AF), stroke, myocardial infarction (MI), heart

failure (HF), VTE, and all-cause mortality. We conducted our

research using data from a general population study, the Malmö

Diet and Cancer study (MDCS, n = 27,141) with a follow-up

period of up to 27 years.
Methods

Study population

The Malmö Diet and Cancer study (MDCS) is a large

prospective cohort study from the city of Malmö, Sweden. During

1991–1996, all men born 1923–1945 and women born 1923–1950

living in the city of Malmö were invited in the screening center to

participate in the study. The overall participation rate was 40.8%

(19). A total of 30,446 participants underwent the baseline

examinations. Here, we excluded subjects with missing genotype
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data, resulting in 28,977 subjects included. Additionally, subjects

with missing information on RDW (n = 1,820) or outliers of RDW

were excluded (n = 16). In total, 27,141 subjects were included in

the final study sample for analysing associations with incidence of

CE, stroke, AF, HF, VTE, CKD, diabetes and mortality. Since

diabetes or a CVD event potentially could affect RDW and life

span of the red cells (8), we excluded individuals with endpoints

before the baseline examination, resulting in slightly different

numbers for the various outcomes (range 25,929–27,141)

(Supplementary Figure 1: study flow chart for study selection).

A study of representativity and mortality in participants and

non-participants has been published. Prevalence of smoking and

obesity was comparable in MDCS and another study from the

same city—a postal survey with participation rate of 75% (20).

However, the mortality rates were lower in MDCS participants

than in non-participants, suggesting that MDCS is a comparably

healthy cohort (19).

All participants provided and signed written consent and the

study conforms to the principles of the Declaration of Helsinki.

This study was approved by the Ethical Committee at Lund

University (LU 51–90, LU 2009/633, LU 2011/356).
Baseline examinations and red cell
distribution width measurements

The baseline information was collected using extensive

questionnaires, blood sample collection and physical examination.

Standing height and weight were recorded with light clothing and

no shoes. BMI was calculated as weight/height2 (kg/m2). Non-

fasting blood samples were taken during the baseline examinations.

Serum and plasma were separated within one hour and stored at

−80°C until the analyses. RDW-SD was used in this study,

measured in fresh and heparinized blood by a Sysmex K1000

counter (www.sysmex.com). RDW-SD was defined as the width

(fL) of the red cell distribution curve at the height of 20% above

the baseline (21). Smoking status was ascertained from self-

administered questionnaires, which were divided into three groups

(regular or occasional smokers, non-smokers and missing).

Apolipoprotein A1 (ApoA1) and B (ApoB) were analysed using

Quest Diagnostics (San Juan Capistrano, CA). Fasting plasma

glucose (FPG) was measured using HemoCue (HemoCue AB,

Ängelholm, Sweden). HbA1c was measured by ion exchange

chromatography, using the Swedish Mono-S standardization system.

Baseline prevalent diabetes was collected by self-reported history of

use of anti-diabetic medication or physician’s diagnosis of diabetes

from questionnaire.
Genotyping and quality control of the
Malmö diet and cancer study

The subjects included in the MDCS were genetically tested using

Illumina GSA v1 genotyping array. Prior to imputation, quality

controls on the genotyped single nucleotide polymorphism (SNP)

were conducted by removing low quality variants [mismatched
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probe, minor allele frequency (MAF)≤ 0.01, incorrect assignment of

allelic variant, failed genotype calling or p-value from Hardy-

Weinberg Equilibrium test less than 1 × 10−15]. Samples exhibiting

evidence of gender mismatch or possessing an overall sample call

rate below 90% were excluded from the analysis. Population

structure was characterized using principal component analysis

(PCA) by implementing the FlashPCA (22) on the genotyped

data. Data were imputed with reference panel of Haplotype

Reference Consortium (HRC r1.1) using the Michigan Imputation

Server (23).
Polygenic scores (PGS) for RDW

A Bayesian regression framework PRS-continuous shrinkage

(PRS-CS) (24) was conducted to build PGS for RDW. Restricted

to common variants (MAF > 0.05) that are biallelic, PRS-CS was

used to infer posterior effect sizes of SNP which were based on

linkage disequilibrium reference panel of HapMap3 in a

European sample and GWAS summary statistics on RDW (n =

408,112) (25), where age, sex and principal components (PCs)

were adjusted in the GWAS analyses. Using the PLINK (version

1.90) (26), PGS for RDW were constructed for 28,977 MDCS

samples by aggregating the obtained posterior effect sizes for

1,009,029 SNPs. PGS for RDW is a relative measure in arbitrary

units. High PGS for RDW represent high RDW levels.
Endpoint ascertainment

The outcomes of interest in this study were, incidence of CKD,

diabetes, cardiovascular outcomes (including HF, CE, stroke, AF,

VTE) and all-cause mortality. All participants were followed from

the baseline examinations until the event of interest, emigration,

or last follow-up date (31st December 2018), whichever came first.

For VTE, the participants were followed up till 31st December 2013.

In this study, information regarding all-cause mortality was

retrieved from the Swedish Cause of Death Register (CDR) (27),

which covers all deaths among Swedish citizens. Death

certificates with information about underlying causes of death

were written by a registered physician and coded according to

the International Classification of Diseases, 9th and 10th revision

(ICD-9 and ICD-10) codes.

Information regarding incident CE, stroke, AF, HF, CKD, or

VTE were obtained from national patient registers. The Swedish

inpatient register has been in operation during the follow-up

period and data from this registry has been reported to have

acceptable validity for epidemiological research (28). For incident

CE, data linkage with the Swedish patient register and the CDR

were used to retrieve cases (27, 28). Incidence of CE were

defined as fatal or non-fatal MI (ICD-9 code 410 or ICD-10 code

I21) or death due to ischemic heart disease (ICD-9 codes 410-

414; ICD-10 codes I21-I25).

Stroke was defined as codes 430, 431,434 or 436 (ICD-9), or

I60-61 or I63–64 (ICD-10). Ischemic stroke was defined as 434

(ICD-9) or I63 (ICD-10) (28, 29).
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The diagnostic code for AF was 427D for ICD-9 and I48 for

ICD-10 (30, 31). HF was defined as a primary diagnosis of ICD-

9 code 428 or ICD-10 code I50 (32). VTE included deep vein

thrombosis (DVT) and pulmonary embolism (PE), which was

defined as ICD-9 code: 415B (PE), and 451 (DVT); and ICD-10

code: I26 (PE), and I80 (DVT) as the primary diagnosis (33).

Incident CKD was defined as code: 585-586 (ICD-9) and N18

and N19 (ICD-10). Incidence of CKD was retrieved from Swedish

patient register (34) and the Swedish renal registry was searched for

any additional CKD cases (35).

Incident diabetes was defined using several registers, including

the Malmö HbA1c register, the Swedish national Diabetes register,

the Swedish patient register, the CDR and the Swedish drug

prescription register which have been described previously (36).
Statistical analysis

Means ± standard deviations (SDs) were reported for continuous

variables and numbers with percentages were reported for

categorical variables. The Pearson and Spearman correlation were

performed for the correlations of two continuous variables. Cox

regression models were implemented to obtain hazard ratios (HR)

with 95% confidence interval (CI) per 1-SD increase of RDW and

PGS for RDW, respectively. Adjustments were kept to a minimum

and limited to a few key confounders known from the literature

(Model 1 was crude model; model 2 was additionally adjusted for

age, sex, smoking status, BMI, and diabetes). For PGS for RDW,

the models were additionally adjusted for the first 5 principal

components (PCs) of the population structure, since genetic

ancestry may explain associations between variants and a specific

phenotype. Interactions between age and sex and RDW or

PGS-RDW, respectively, were tested using multiplicative

interaction terms in Cox regressions with adjustments in model 2.

A p value <0.05 was considered significant. All statistical

analyses were carried out using SPSS V.28 (IBM, Armonk,

New York, USA).
Results

Baseline characteristics of study population

Baseline characteristics across the quartiles of PGS-RDW are

shown in Table 1. Across the quartiles of PGS-RDW, we found

that there were significant relationships between PGS-RDW and

RDW, haemoglobin, Apo A1, and HbA1c. The distribution of

RDW and PGS-RDW in this study is illustrated in Supplementary

Figures 2, 3. From the figure, we could see that PGS-RDW was

normally distributed and associated with RDW in the current study.

The correlation coefficients between RDW and PGS-RDW,

respectively, and other risk factors are presented in Table 2. The

Pearson’s correlation of PGS-RDW and RDW were 0.133,

p < 0.001. RDW was significantly correlated to age, BMI, HbA1c

and glucose. There was a significant correlation between PGS-

RDW and HbA1c (r = 0.101, p < 0.001, n = 5,186) and BMI (r =
frontiersin.org
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TABLE 1 The characteristics of study population across the quartile of PGS-RDW.

Total Q1 Q2 Q3 Q4 p-for trend
Participants (numbers) 27,141 6,785 6,785 6,786 6,785

RDW (fL) 40.7 ± 3.40 40.2 ± 3.41 40.6 ± 3.32 40.9 ± 3.40 41.3 ± 3.36 <0.001

PGS-RDW −0.06 ± 0.46 −0.64 ± 0.24 −0.20 ± 0.09 0.09 ± 0.09 0.52 ± 0.22 <0.001

Age (years) 58.2 ± 7.61 58.3 ± 7.59 58.3 ± 7.63 58.0 ± 7.62 58.2 ± 7.61 0.302

Male sex (n, %) 10,692, 39.4 2,707, 39.9 2,629, 38.7 2,620, 38.6 2,736, 40.3 0.106*

BMI (kg/m2) 25.7 ± 3.97 25.7 ± 3.97 25.7 ± 3.92 25.7 ± 3.97 25.8 ± 4.03 0.135

Diabetes (n, %) 827, 3.0 211, 3.1 214, 3.2 199, 2.9 203, 3.0 0.867*

Smoking (n, %) 7,562 (27.9) 1,879 (27.7) 1,844 (27.2) 1,963 (28.9) 1,876 (27.6) 0.263

Hemoglobin (mg/dl) 141.8 ± 12.1 142.7 ± 12.2 141.9 ± 12.1 141.4 ± 12.0 141.1 ± 11.9 <0.001

Anemia (n, %) 807 (3.0) 181 (2.7) 178 (2.6) 213 (3.1) 235 (3.5) 0.010

Apo A1 (mg/dl) 156.8 ± 28.2 155.8 ± 27.6 156.9 ± 28.3 157.4 ± 28.6 157.2 ± 28.3 0.008

Apo B (mg/dl) 107.2 ± 26.1 107.3 ± 26.0 107.2 ± 26.0 107.7 ± 25.9 106.5 ± 26.4 0.066

HbA1c (%, n = 5,189) 4.8 (4.5, 5.1) 4.7 (4.4, 5.0) 4.8 (4.5, 5.1) 4.8 (4.5, 5.1) 4.9 (4.6, 5.2) <0.001

Glucose (mmol/L, n = 5,193) 4.9 (4.6, 5.3) 4.9 (4.6, 5.3) 4.9 (4.6, 5.3) 4.9 (4.6, 5.3) 4.9 (4.6, 5.3) 0.379

The results were presented as means ± standard deviations for continuous variable and numbers, percentages for categorical variables.

Q, quartile; RDW, red cell distribution width; PGS, polygenic score; BMI, body mass index; Apo A1, Apolipoprotein A1; Apo B, Apolipoprotein B; HbA1c, hemoglobin A1c.

*The results were obtained by Chi-Square.

TABLE 2 The correlations between PGS-RDW, RDW and several factors.

Variables RDW Age BMI Hemoglobin Apo A1 Apo B HbA1c Glucose

Numbers n = 27,141 n = 27,141 n = 27,099 n = 27,007 n = 26,659 n = 26,656 n = 5,186 n = 5,193
PGS-RDW R1 0.133 −0.004 0.014 −0.059 0.013 −0.012 0.101 0.003

P <0.001 0.461 0.024 <0.001 0.028 0.044 <0.001 0.808

R2 0.135 −0.005 0.013 −0.054 0.016 −0.012 0.149 −0.013
P <0.001 0.368 0.035 <0.001 0.011 0.058 <0.001 0.353

RDW R1 – 0.118 −0.118 −0.053 0.121 −0.066 0.051 −0.088
P – <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001

R2 – 0.112 −0.124 −0.054 0.123 −0.066 0.190 −0.071
P – <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

R1, Pearson’s correlation coefficient; R2, Spearman’s correlation coefficient; RDW, red cell distribution width; PGS, polygenic score; BMI, body mass index; Apo A1,

Apolipoprotein A1; Apo B, Apolipoprotein B; HbA1c, hemoglobin A1c.
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0.014, p = 0.024), but no significant correlation with fasting glucose

(r = 0.003, p = 0.808).
Cardiometabolic outcomes predicted by
PGS-RDW and RDW

Elevated RDW was significantly associated with incidence of

stroke, AF, HF, VTE, CKD and all-cause mortality. These

relationships remained significant after additional adjustments for

risk factors (age, sex, smoking status, BMI, and diabetes)

(Table 3 and Figure 1). RDW was inversely associated with

incidence of diabetes (adjusted HR: 0.87, 95% CI: 0.84–0.90, p <

0.001).

For PGS-RDW, we found an inverse association with incidence

of diabetes [adjusted HR: 0.96 (95% CI: 0.94–0.99), p = 0.011 in

model 2] (adjusted for age, sex, PCs 1–5, smoking status, BMI)

(Table 3 and Figure 1). PGS-RDW was not significantly

associated with stroke, AF, VTE, HF, CKD or mortality after full

adjustments (Table 3 and Figure 1).

The sex-specific relationships between RDW, PGS-RDW and

outcomes are presented in Supplementary Table 1. There was a
Frontiers in Cardiovascular Medicine 04
significant interaction between RDW and sex with respect to

mortality, indicating a stronger relationship in men. For

incidence of diabetes, the relationship with RDW was stronger in

women (Supplementary Table 1). We also tested the age-specific

relationships between RDW, PGS-RDW and outcomes. There

were significant interactions between RDW and age with respect

to mortality and incidence of diabetes. The associations with

mortality were stronger in individuals aged <60 years, while the

reduced risk of diabetes was stronger in individuals aged ≥60
years (Supplementary Table 2).
Sensitivity analyses

As PGS-RDW was significantly associated with HbA1c, we

further examined the relationships between PGS-RDW and

incidence of diabetes after excluding diabetes cases whose

diabetes diagnosis was based on high HbA1c values in the

HbA1c register. The results showed that RDW and PGS-RDW

were still significantly associated with incident diabetes: adjusted

HR per 1 SD increase in PGS-RDW: 0.96, 95% CI: 0.92–0.99,

p = 0.013; HR per 1 SD increase in RDW: 0.89, 95% CI: 0.85–
frontiersin.org
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TABLE 3 The associations between PGS-RDW, RDW and mortality and
cardiometabolic outcomes in the MDCS.

Outcomes (events/
individuals, n/n)

Per 1 SD increase of
PGS-RDWa

Per 1 SD increase
of RDWb

All-cause mortality (11,179/27,141)
HR (95% CI) Model 1 1.01 (0.99–1.03) 1.31 (1.29–1.33)

HR (95% CI) Model 2 1.01 (0.99–1.03) 1.18 (1.16–1.20)

Incidence of CE (3,384/26,621)
HR (95% CI) Model 1 1.02 (0.99–1.06) 1.10 (1.07–1.14)

HR (95% CI) Model 2 1.02 (0.99–1.06) 1.03 (0.99–1.06)

Incidence of stroke (3,124/26,846)
HR (95% CI) Model 1 0.99 (0.96–1.03) 1.15 (1.11–1.19)

HR (95% CI) Model 2 0.99 (0.96–1.03) 1.06 (1.02–1.10)

Incidence of AF (5,195/26,867)
HR (95% CI) Model 1 1.00 (0.97–1.03) 1.12 (1.09–1.15)

HR (95% CI) Model 2 1.00 (0.97–1.02) 1.09 (1.06–1.12)

Incidence of CKD (1,761/27,134)
HR (95% CI) Model 1 1.00 (0.96–1.05) 1.10 (1.04–1.15)

HR (95% CI) Model 2 1.00 (0.96–1.05) 1.08 (1.03–1.13)

Incidence of HF (1,992/27,062)
HR (95% CI) Model 1 0.99 (0.95–1.03) 1.21 (1.16–1.26)

HR (95% CI) Model 2 0.99 (0.95–1.03) 1.13 (1.08–1.19)

Incidence of diabetes (4,427/25,929)
HR (95% CI) Model 1 0.97 (0.94–1.00) 0.85 (0.82–0.88)

HR (95% CI) Model 2 0.96 (0.94–0.99) 0.87 (0.84–0.90)

Incidence of VTE (1,332/26,943)
HR (95% CI) Model 1 1.00 (0.95–1.06) 1.23 (1.17–1.30)

HR (95% CI) Model 2 1.00 (0.95–1.06) 1.21 (1.15–1.28)

RDW, red cell distribution width; PGS, polygenic score; HR, hazard ratio; CI,

confidence interval; CE, coronary events; AF, atrial fibrillation; CKD, chronic

kidney disease; HF, heart failure; VTE, venous thromboembolism.
aModel 1 was adjusted for PC1-5; Model 2 was additionally adjusted for age, sex,

BMI, smoking and diabetes.
bModel 1 was crude model; Model 2 was additionally adjusted for age, sex, BMI,

smoking and diabetes.
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0.92, p < 0.001. As anaemia is a risk factor for RDW and

cardiometabolic disease, we also additionally adjusted for

anaemia in the last models of associations between RDW, PGS-

RDW and cardiometabolic diseases, but the results were almost

unchanged (data not shown).
Discussion

RDW has been related to risk of cardiometabolic diseases and

mortality in several previous studies (1, 4, 5), but possible

etiological relations between RDW and cardiometabolic diseases

remain unclear. We found significant relationships between

RDW and incidence of several adverse events, such as incidence

of CKD, CVDs and all-cause mortality in the MDCS.

Interestingly, with exception of diabetes, PGS-RDW was not

significantly associated with incidence of these outcomes. For

incidence of diabetes, there was a significant inverse association

with both RDW and PGS-RDW after adjustments for potential

risk factors. The results show that RDW is an unspecific risk

marker for various adverse health outcomes but is probably not

causally related to mortality and CVD. However, the nature of
Frontiers in Cardiovascular Medicine 05
the inverse relationship between RDW and incidence of diabetes

is of interest and warrants further studies.

Several observational studies have found that RDW is

independently associated with CVDs, including MI (2), stroke (1,

37), AF (38), HF (39), VTE (40) and mortality (41, 42). The

present results of RDW confirm and expand on previous results

from MDCS, as well as other cohort studies. Several potential

mechanisms were proposed to contribute to these associations,

such as inflammation (6) and oxidative stress (7), which could

affect red blood cell (RBC) production and erythropoiesis, and

thereby RDW. There are also some previous studies of

genetically predicted-RDW in relation to CVDs (12, 18, 43, 44).

A study from the UK Biobank reported that genetically increased

RDW was not predictive for incident cardiovascular disease.

Furthermore, genetic risk score of LDL and genetic risk score of

systolic blood pressure were inversely associated with RDW. The

authors suggested that relationship between RDW and

cardiovascular outcomes may partly be related to aging (43).

Another previous study (18) showed non-significant relationships

between genetically-increased-RDW and CVDs. In accordance

with the previous studies, we did not find any significant

relationship between PGS-RDW and CVDs in this study with

individual follow-up data. This suggests that although RDW

could be a valuable marker of predicting incident of CVDs, it is

probably not causally related to increased CVD or mortality risks.

Inflammation or oxidative stress have been reported to increase

RDW, as inflammation might be related to reduced RBC formation

(6). A previous study (45) reported that the low response to

erythropoietin treatment in patients with low-grade inflammation

could lead to low red cell turn-over. As inflammation is

commonly seen in many diseases, including CVDs, it is

presumable that this might lead to high RDW in individuals.

Besides, a previous study of the associations between common

demographic and clinical characteristics (including laboratory

tests) with variability in RDW, indicated that only small

percentage of the observed variation in RDW was explained by

routinely assessed clinical or laboratory variables [including

inflammation markers, such as white blood cells (WBC), etc.]

(46). Also, our previous studies reported RDW was associated

with mortality and abdominal aortic aneurysm after multiple

adjustments of routine laboratory parameters (i.e., WBC, etc.) (5,

47). Hence, other routine laboratory parameters do not seem to

fully explain the relationships between RDW and mortality or

cardiovascular outcomes. The relationships between RDW and

outcomes might be driven by many factors including

inflammatory factors. In addition, it is also possible that

unmeasured confounders could explain the associations between

RDW and all-cause mortality and major cardiovascular events in

observational studies. More research is needed in this regard.

RDW has previously been linked to adverse outcomes in patients

with CKD or with impaired kidney function (48–50). We observed

significant relationships between RDW and incidence of CKD in the

MDCS, however, we did not find any significant relationship

between PGS-RDW and incident CKD and the results suggest that

RDW could be a biomarker for CKD risk in the general

population, but probably not a causal factor for incident CKD.
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FIGURE 1

The forest plot presenting relationships between RDW and PGS of RDW and mortality and cardiometabolic diseases. The model was adjusted for age, sex,
BMI, smoking and diabetes. For PGS-RDW and mortality and cardiometabolic disease, the model was additionally adjusted for PC1-PC5. RDW, red cell
distribution width; PGS, polygenic score; HR, hazard ratio; CI, confidence interval; CE, coronary events; AF, atrial fibrillation; CKD, chronic kidney disease;
HF, heart failure; VTE, venous thromboembolism.
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The inverse relationship between RDW and diabetes is in

accordance with a previous study from the present cohort, but in

contrast to results from a Chinese study (51). In our study we also

found a significant inverse relationship between PGS-RDW and

incidence of diabetes. The relationship between RDW and diabetes

is complex. First, many studies have shown positive relationship

between RDW and HbA1c (52), similarly to our findings. In our

study we also found a significant relationship between HbA1c and

PGS-RDW. This is probably explained by a relationship between

RDW and increased life span of the circulating red cells (8).

Longer red cell lifespan will result in a higher proportion of red

cells being exposed to glucose for long time (4). Individual

differences in erythrocyte lifespan can be large enough to explain

variations in HbA1c (53). However, in our study, the relationship

between PGS-RDW and incidence of diabetes persisted in a

sensitivity analysis when we excluded diabetes cases who were

identified using the register of HbA1c measurements. Another

important factor is that hyperglycaemia might affect erythrocytes in

several aspects (54), such as increased volumes, reduced

deformability and osmotic stability of the red cells (55), which

might lead to shorter red cell life span and higher concentrations

of reticulocytes. Hence, presence of hyperglycaemia could

potentially modify the relationships between RDW and glucose or

HbA1c. The present study of an initially non-diabetic population
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found significant inverse relationships with incidence of diabetes,

both for RDW and PGS-RDW. The results are supported by

results from UK Biobank reporting an inverse relationship between

the genetic risk scores for type 2 diabetes and RDW, although this

became non-significant after adjustment for multiple comparisons

(43). Nevertheless, the relationship between RDW and diabetes

need to be further studied also with other types of study design.
Strengths and limitations

The large population-based cohort study with individual

follow-up data is a major strength of this study. The PGS-RDW

was constructed using about one million genetic polymorphisms,

which should increase the statistical power. However, even

though we used a large cohort with individual follow-up data,

low statistical power remains a potential problem in Mendelian

randomization studies.

The GWAS study we used to calculate the PGS-RDW, and the

subjects of the present study were mostly from European ancestry

(44). This limits the generalizability to subjects from non-European

ancestry. Furthermore, the GWAS used to calculate PGS-RDW was

based on RDW-CV, and not RDW-SD, which was used as measure

of RDW in this cohort. However, RDW and PGS-RDW were also
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significantly correlated in this study. Another limitation is potential

horizontal pleiotropic effects. Especially for diabetes, more studies

are needed to examine whether there are any causal relationships.
Conclusions

RDW is associated with mortality and increased incidence of

CKD and different CVDs, but the non-significant relationship

with PGS-RDW indicates that the relationships are not causal.

However, both RDW and PGS-RDW were inversely associated

with incidence of diabetes, indicating a potentially causal

association. RDW is not causally involved in most CVDs but

could still be a useful marker. The relationship with incidence of

diabetes needs to be further studied.
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