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Transfer learning between preclinical
models and human tumors identifies a
conserved NK cell activation signature in
anti-CTLA-4 responsive tumors
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Abstract

Background: Tumor response to therapy is affected by both the cell types and the cell states present in the tumor
microenvironment. This is true for many cancer treatments, including immune checkpoint inhibitors (ICIs). While it is
well-established that ICIs promote T cell activation, their broader impact on other intratumoral immune cells is
unclear; this information is needed to identify new mechanisms of action and improve ICI efficacy. Many preclinical
studies have begun using single-cell analysis to delineate therapeutic responses in individual immune cell types
within tumors. One major limitation to this approach is that therapeutic mechanisms identified in preclinical
models have failed to fully translate to human disease, restraining efforts to improve ICI efficacy in translational
research.

Method: We previously developed a computational transfer learning approach called projectR to identify shared
biology between independent high-throughput single-cell RNA-sequencing (scRNA-seq) datasets. In the present
study, we test this algorithm’s ability to identify conserved and clinically relevant transcriptional changes in complex
tumor scRNA-seq data and expand its application to the comparison of scRNA-seq datasets with additional data
types such as bulk RNA-seq and mass cytometry.

Results: We found a conserved signature of NK cell activation in anti-CTLA-4 responsive mouse and human tumors.
In human metastatic melanoma, we found that the NK cell activation signature associates with longer overall
survival and is predictive of anti-CTLA-4 (ipilimumab) response. Additional molecular approaches to confirm the
computational findings demonstrated that human NK cells express CTLA-4 and bind anti-CTLA-4 antibodies
independent of the antibody binding receptor (FcR) and that similar to T cells, CTLA-4 expression by NK cells is
modified by cytokine-mediated and target cell-mediated NK cell activation.
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Conclusions: These data demonstrate a novel application of our transfer learning approach, which was able to
identify cell state transitions conserved in preclinical models and human tumors. This approach can be adapted to
explore many questions in cancer therapeutics, enhance translational research, and enable better understanding
and treatment of disease.

Background
Single-cell RNA-sequencing (scRNA-seq) data provide
an unprecedented opportunity to unravel the cellular
complexity and diversity of immune cell populations in
the tumor microenvironment [1]. When used in the con-
text of immunotherapy, scRNA-seq data of tumors can
provide a more comprehensive understanding of the
molecular and cellular pathways that drive therapeutic
response and resistance. While studies often use preclin-
ical mouse models as a convenient and useful tool for
studying therapeutic response mechanisms, they are lim-
ited in their ability to infer biology relevant to thera-
peutic responses in humans. To improve the clinical
efficacy of immunotherapies such as immune checkpoint
inhibitors (ICIs), we need a deeper understanding of the
fundamental mechanisms that underlie the anti-tumor
activity of ICIs in humans.
Many aspects of the immune system are conserved be-

tween mice and humans, but there are significant
species-specific differences [2]. These differences may
contribute to the frequent failure of therapies that are ef-
fective in mouse models from showing similar efficacy in
humans [3]. Discrepancies between ICI mechanisms ob-
served in mice and humans may be further complicated
by species-specific differences that mask detection of
conserved alterations in responding immune cells. A
deeper understanding of human and mouse immune re-
sponses to immunotherapy could generate new insights
into properties that define therapeutic sensitivity. Emer-
ging scRNA-seq studies that have begun to characterize
changes in gene expression after ICI treatment [4–6] are
ideally suited to begin learning these mechanisms. How-
ever, computational tools that identify conserved cell
state transitions across species are needed to compensate
for species-specific immune system differences in tran-
scriptional data. As scRNA-seq becomes increasingly
popular in immuno-oncology, such tools will be essential
to validate preclinical findings in terms of both robust-
ness and clinical relevance.
To enable cross-species data integration, we previously

developed a computational framework that uses matrix
factorization (CoGAPS) and transfer learning (projectR)
to integrate transcriptional datasets from different spe-
cies [7]. This approach has led to the identification of
both species-specific and conserved biological processes
in the developing retina of mice and humans [8, 9], but

it has not yet been applied to cancer therapeutics. To
determine if transfer learning can identify conserved and
clinically relevant transcriptional alterations within the
tumor microenvironment induced by therapy, we ap-
plied it to learned cellular patterns from scRNA-seq data
of intratumoral immune cells in ICI-treated preclinical
models and human patients.
We focused our investigation on the impact of anti-

CTLA-4 antibodies because of the numerous cellular
mechanisms of action of anti-CTLA-4 antibodies (ipili-
mumab) found to underlie its efficacy [10, 11]. By block-
ing the inhibitory T cell receptor CTLA-4, anti-CTLA-4
antibodies enhance T cell effector activity, causing
tumor regression [12, 13]. Studies in mice suggest that
anti-CTLA-4 efficacy is also dependent on the depletion
of CTLA-4 expressing regulatory T cells [14, 15]. How-
ever, Sharma et al. [16] found that anti-CTLA-4 treat-
ment does not deplete Tregs in several human cancer
types, suggesting there may be a discrepancy in anti-
CTLA-4 response between mouse and human tumors.
Therefore, attempts to understand the mechanism of ac-
tion of anti-CTLA-4 antibodies could be improved by
computational approaches that can identify biology
shared by mice and humans and point to additional cell
types beyond T cells that may mediate anti-CTLA-4
therapeutic efficacy.
Altogether, this study provides an application of trans-

fer learning to enable preclinical to clinical evaluation of
cellular pathways associated with anti-CTLA-4 treat-
ment. Using scRNA-seq data from Gubin et al. [4], we
show that CoGAPS is able to detect robust transcrip-
tional signatures associated with anti-CTLA-4 treatment
(Fig. 1). The signature most associated with anti-CTLA-
4-treated tumors reflected NK cell activation. We use
projectR to confirm the association of this signature with
positive clinical outcomes in datasets generated from
distinct modalities that include bulk RNA-seq, mass cy-
tometry, and scRNA-seq. This analysis identifies NK cell
activation in anti-CTLA-4-treated human tumors that
had not been described previously. We confirm our
computational findings with complementary molecular
techniques to begin to elucidate how NK cells activate in
response to anti-CTLA-4 treatment. These analyses yield
novel insights into the role of NK cells in anti-CTLA-4
efficacy and represent a general strategy for the study of
shared tumor biology across datasets derived from
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different tumor types, treatment groups, sequencing
platforms, and species.

Methods
Data collection
In this study, we used three public scRNA-seq datasets
that were downloaded from NCBI’s Gene Expression
Omnibus (GEO). For CoGAPS analysis on preclinical
immunotherapy samples, we used the dataset from
Gubin et al. (accession number GSE119352) [4]. This
dataset contains ~ 15,000 flow-sorted CD45+ intratu-
moral cells from mouse sarcomas that were collected
during treatment with either control monoclonal anti-
body, anti-CTLA-4, anti-PD-1, or combination anti-
CTLA-4 and anti-PD-1 acquired with the 10x Genomics
Chromium platform, using v1 chemistry. Associations
between CoGAPS signatures and immunotherapy treat-
ment were confirmed by transfer learning using paired
mass cytometry data from Gubin et al. [4], which was
downloaded from the FLOW Repository (FR-FCM-
ZYPM) and processed using the R package cytofkit ver-
sion 0.99.0.
For transfer learning to human samples, we used two

scRNA-seq datasets of intratumoral immune cells from
metastatic melanoma patients. To first test the

relationship between our preclinical CoGAPS patterns
and clinical outcome, we used the dataset from Sade-
Feldman et al. (accession number GSE120575) [5]. This
dataset contains ~ 16,000 flow-sorted CD45+ intratu-
moral cells obtained from 48 human melanoma tumor
biopsies from 32 patients at baseline or after treatment
with either anti-CTLA-4, anti-PD-1, or combination
anti-CTLA-4 and anti-PD-1. This data was acquired
with Smart-seq2 [17].
Next, to confirm the observed relationship between

our preclinical NK activation signature and response
to anti-CTLA-4, we used the scRNA-seq dataset from
de Andrade et al. (accession number GSE139249) [6].
This dataset contains ~ 40,000 flow-sorted NK cells
from matched blood and tumor samples obtained
from 5 patients with melanoma metastases. Two
patients had an initial response to treatment with
anti-CTLA-4 or anti-PD-1 with oncolytic virus. Two
patients failed to respond to combination anti-CTLA-
4 and anti-PD-1 or anti-PD-1. One patient was not
treated with immunotherapy. This data was acquired
with the 10x Genomics Chromium platform, using v2
chemistry.
In addition, bulk RNA-seq was downloaded from The

Cancer Genome Atlas [18]. Normalized gene expression

Fig. 1 Graphical summary. Visual summary of the computational workflow, data types (scRNA-seq, CyTOF, or bulk RNA-seq), and sources
(preclinical or clinical) used to identify conserved responses to immunotherapy. In response to anti-CTLA-4 therapy, we detect natural killer cell
activation in mice and human tumors and demonstrate that human natural killer cells express CTLA-4 and bind anti-CTLA-4 at the cell surface
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for 33 tumor types were obtained using the R/Biocon-
ductor package TCGAbiolinks version 2.14.1 [19].
CIBERSORT scores for this data were obtained from
Thorsson et al. [20].
These datasets were used for pattern discovery and

transfer learning as described below.

Dimensionality reduction and cell type identification
Cell type inference analyses were performed for the
Gubin et al. [4] dataset with the standard Monocle3
workflow using package version 0.2.0 [21–23]. Dimen-
sionality reduction and visualization for scRNA-seq data
were performed using Uniform Manifold Approximation
and Projection (UMAP) [24]. Briefly, the first 15 princi-
pal components were used as input into the reduce_di-
mension function. Canonical cell type marker genes as
described in Gubin et al. [4] were used to annotate cells.

Mouse pattern discovery and gene set analysis using
CoGAPS
CoGAPS analysis was performed using the R/Bioconduc-
tor package CoGAPS version 3.5.8 [25] to analyze the
mouse sarcoma dataset from Gubin et al. [4]. Genes with
a standard deviation of zero were removed prior to ana-
lysis. The input for CoGAPS is a data matrix of single-
cell data with genomic features by cells, a number of
sets, and number of patterns to learn (nPatterns) on
each of the sets of cells. Because single-cell data is large,
CoGAPS is performed for random subsets of cells in the
complete scRNA-seq data as determined by the number
of sets used as an input parameter to the software.
CoGAPS factorizes the input matrix into two related
matrices containing the gene weights (the amplitude (A)
matrix) and sample weights (the pattern (P) matrix) for
each data subset, and then identifies a set of consensus
patterns across the data subsets and re-learns the ampli-
tude (A) matrix on the entire dataset. Because consensus
patterns are learned across multiple sets, the final num-
ber of patterns may not match the input parameter of
nPatterns. The log2 transformed count matrix of
remaining genes across all samples was used as input to
the CoGAPS function. Default parameters were used, ex-
cept nIterations = 50,000, sparseOptimization = True,
and nSets = 12. The input parameters for nPatterns were
determined empirically, by testing over a range of di-
mensions. When the nPatterns input was set to 3, we
obtained results that identified immune cell lineage. We
reasoned that additional patterns could further identify
biological processes in the data related to treatment. We
initially tested 50 patterns; however, many of the pat-
terns highlighted few cells, indicating an over-
dimensionalization of the data. When nPatterns was set
to 25, CoGAPS identified 21 consensus patterns, which
separated immune cell types and cell states.

Genes highly associated with each pattern were identi-
fied by calculating the PatternMarker statistic [26],
which takes the gene weights assigned by CoGAPS and
returns those most associated with a particular pattern
or set of patterns. The CalcCoGAPSStat function was
used to identify pathways significantly enriched in each
pattern for the MSigDB hallmark gene sets [27] and
PanCancer Immune Profiling panel from NanoString
Technologies. This function links each CoGAPS pattern
to the activity of input gene sets using a z-score based
statistic [28]. p-values obtained from pathway analysis
were FDR adjusted with the Benjamini-Hochberg correc-
tion and FDR adjusted p-values below 0.05 were called
statistically significant.

Pseudotime analysis
To perform pseudotemporal ordering, the dataset was
subset to relevant cell types and treatments based on the
desired analysis. Due to the association between pattern
7 and activation state markers, we chose the most active
terminus of the trajectory as the end state. Thus, the
root node of the trajectory was assigned by identifying
the region in the UMAP-dimensional reduction with low
CoGAPS pattern 7 weights. Pseudotime values were
assigned to cells using the order_cells function from the
R package Monocle3 version 0.2.0 [21–23]. Genes with
significant expression changes as a function of pseudo-
time were identified using the graph_test function, using
a multiple-testing corrected q-value cutoff of 0.01.

Construction of multivariate Cox proportional hazards
models
TCGA normalized gene expression for 33 tumor types
was used as input for transfer learning to relate CoGAPS
immune signatures to clinical outcomes. Metadata from
Liu et al. [29] was used for measures of overall survival
and age at diagnosis for TCGA samples. Samples were
restricted to those that were labeled as “Primary solid
tumor” (n = 9113), and “Metastatic” (n = 394) in the
“definition” column of the TCGA metadata, which re-
sulted in 9507 total samples. Association between
CoGAPS pattern weights and overall survival was ana-
lyzed using multivariate Cox proportional hazards re-
gression models using the survival coxph function from
the R package survival version 3.2-11 and p < 0.05 was
used as threshold for significance.

Correlation analysis
To compare the expression of CTLA-4 and CIBERSORT
scores for various immune cell types across immuno-
genic solid tumors from TCGA, we calculated the Spear-
man correlation coefficients using the cor.test function
in R.
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Transfer learning
To examine whether the mouse patterns corresponded
to similar immunotherapy responses in human data, we
used The R/Bioconductor package projectR version 1.0.0
[30] to project the expression matrix from several data-
sets into the CoGAPS pattern matrix [7]. The CoGAPS
result object and the expression matrix from a human
dataset is used as input to the projectR function. Hom-
ologous genes present in the mouse and human data
were retained for projection. Genes without homologs in
the human data were removed. ProjectR returns a new
pattern matrix, which estimates the role of each pattern
in each cell of the human dataset. This comparison of
pattern across species usage enabled us to determine
how each pattern defines features present in the human
dataset (i.e., cell types and immune cell activation).

Pattern performance of predicting anti-CTLA-4 response
The projected pattern weight is a continuous range of
values, instead of a binary outcome. Using the individual
projected pattern weight for each cell and a binary re-
sponse outcome to anti-CTLA-4, we performed ROC
curve analysis using the ROCR package, version 1.0-7 to
determine the true-positive rates versus false-positive
rates of pattern 7 weights to classify response. The area
under the ROC curve was used as the quality metric to
determine the prediction performance.

Cell lines and materials
All human NK cell lines (NK-92, NK-92-CD16v, NKL,
YT and KHYG-1) were kindly provided by Dr. Kerry S.
Campbell (Fox Chase Cancer Center, Philadelphia, PA).
The NK-92-CD16v expressed GFP due to transduction
with pBMN-IRES-EGFP containing the FcγRIIIA con-
struct. All NK cell lines were cultured as previously de-
scribed [31]. Fresh healthy donor NK cells were
purchased from AllCells (PB012-P). These NK cells were
positively selected from donor peripheral blood using
CD56 positivity. Donor NK cell purity was 98–99%.
Donor 3 and donor 4 were expanded using engineered
antigen presenting cells (K562-4-1BB-mbIL-21) accord-
ing to the protocol [32]. CTLA-4 overexpressing Jurkat
cell line was generated using lentiviral transduction pur-
chased from G&P BIosciences (Product ID LYV-CTLA4,
SKU# LTV0710) which contained full length human
CTLA-4 gene subcloned into lentiviral expression vector
pLTC with an upstream CMV promoter with puromycin
selection marker. Jurkat cells were transduced using
millipore sigma’s spinoculation protocol. In brief, lenti-
viral particle solution was added to 2 × 106 Jurkat cells
at a final multiplicity of infection of 1, 5, and 10. Cells
were centrifuged at 800×g for 30 min at 32 °C then re-
suspended in complete growth medium for 3 days. After
3 days, cells were resuspended in complete medium

containing 5 μg/mL puromycin overnight for selection.
Selection was performed twice.

qRT-PCR
RNA was isolated using the PureLink RNA Mini Kit
(Ambion). The RNA concentration was measured using
NanoDrop 8000 (Thermo Fisher Scientific). cDNA was
generated from 20 to 100 ng of RNA using the GoTaq
2-step RT-qPCR System (Promega). qPCR was per-
formed with SYBR Green on a StepOnePlus real-time
PCR system (Applied Biosystems). Gene expression was
normalized to HPRT and analyzed using 1/DCt method
with triplicates.
Primers used were the following:
CTLA-4: (F: CATGATGGGGAATGAGTTGACC; R:

TCAGTCCTTGGATAGTGAGGTTC)
CD28: (F: CTATTTCCCGGACCTTCTAAGCC; R:

GCGGGGAGTCATGTTCATGTA)
CD28H: (F: CCCTGCAAGAAGCCTCAAG; R: CCTT

TGTCCACTTAACACGGAG)
HPRT: (F: GATTAGCGATGATGAACCAGGTT; R:

CCTCCCATCTCCTTCATGACA)

Western blot
Cells were lysed in boiling buffer with EDTA (Boston
BioProducts) supplemented with 1X protease and 1%
phosphatase inhibitor prepared following the manufac-
turer’s protocols (Sigma-Aldrich, Cat. No. 11697498001
and P5726). Cleared lysate concentrations were obtained
by a DC Protein Assay (BioRad). Lysates 30–50 μg were
run on SDS-PAGE gels and transferred to nitrocellulose
membranes (GE Healthcare). Western blots were con-
ducted using anti-CTLA-4/CD152 (LS-C193047, LSbio)
at concentrations of 1:1000 diluted in 5% milk in PBST.
Secondary antibody was anti-rabbit IgG, HRP linked
(Cell Signaling) used at 1:1000. Chemiluminescent sub-
strate (Pierce) was used for visualization.

Flow cytometry
All cells were aliquoted into Eppendorf tubes, spun at
5000 rpm for 1 min at 4 °C, washed twice with HBSS
(Fisher Scientific Cat. No. SH3058801), and resuspended
in 50 μL of FACS buffer (PBS plus 1% BSA) and blocked
with 1 μL human Fc block (BD Biosciences, 564219) for
20 min at 4 °C. Labeled antibodies were then added at
the manufacturer’s recommended concentrations and in-
cubated at 4 °C for 30 min, with vortexing at 15 min.
Cells were then washed with FACS buffer twice and re-
suspended in FACS buffer or fixative (1% PFA in PBS).
Flow antibodies included anti-human CD152 (CTLA-4)
(BD Bioscience 555853), CD28 (Biolegend 302907), and
CD28H (R&D Systems, cat#MAB83162). The CD152
antibody has previously been shown to adequately detect
CTLA-4 expression on both human T and B cells (29).
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Samples were run in the Georgetown Lombardi Com-
prehensive Cancer Center Flow Cytometry & Cell Sort-
ing Shared Resource using BD LSRFortessa. Analyses
were performed using FlowJo (v10.4.1).

Immunofluorescence
Ipilimumab was acquired from the Medstar Georgetown
University Hospital. Ipilimumab was labeled with
Dylight550 fluorophore using the Dylight550 Conjuga-
tion Kit (Fast)-Lightning-Link (abcam, ab201800). In
short, ipilimumab was diluted from 5 to 2 mg/mL using
sterile PBS. Human IgG (Jackson ImmunoResearch, 009-
000-003) was diluted from 11 to 2 mg/mL using sterile
PBS. One microliter of modifying reagent was added to
10 μL diluted ipilimumab and 10 μL diluted human IgG.
Ten microliters antibody was then added to the conjuga-
tion mix and incubated at room temperature in the dark
for approximately 6 h. One microliter of quencher re-
agent was added to the labeled ipilimumab and the anti-
body was stored in the dark at 4 °C. NK-92 and PANC-1
cells were collected and washed with cold PBS and
brought to a final concentration of 1 × 106 cells/mL in
staining buffer (1% BSA in PBS) in 50 μL. Fifty microli-
ters of labeled ipilimumab or human IgG was added to
cells to yield a final concentration of 1 μg/mL antibody.
Cells were incubated in the dark at 4 °C for 1 h. After in-
cubation, cells were pelleted and washed three times
with cold PBS. Cells were brought to a final concentra-
tion of 0.5 × 106 cells/mL and 100 μL was immobilized
on slides using cytospin (Cytospin 2, Shandon) for 5 min
at 1000 rpm. Following immobilization cells were fixed
with 4% PFA for 10 min at room temperature then
washed three times with cold PBS. Coverslips were
mounted using VectraSheild mounting media with DAPI
and sealed using clear nailpolish and allowed to dry
overnight in the dark. Analyses were performed with the
Leica SP8 AOBS laser scanning confocal microscope.

Cell surface biotinylation
Cell surface biotinylation of NK92, NKL, YT, and
KHYG-1 cells was performed with the Pierce Cell Sur-
face Protein Isolation kit (Thermo Scientific, cat#89881)
according to the manufacturer’s protocol. In brief, 4 ×
108 cells were pelleted and washed with cold PBS then
incubated with EZ-LINK Sulfo-NHS-SS-biotin for 30
min at 4 °C followed by the addition of a quenching so-
lution. Another 1 × 106 cells were collected and saved
for total cell western blotting. Cells were lysed with lysis
buffer (500 μL) containing the cOmplete protease inhibi-
tor cocktail (Roche, cat# 11697498001). The biotinylated
surface proteins were excluded with NeutrAvidin agar-
ose gel (Pierce, 39001). Samples were diluted 50 μg in
ultrapure water supplemented with 50 mM DTT.

Lysates were subjected to Western blotting with the
anti-CTLA-4 antibody described above.

NK cell stimulation
Cell lines or expanded primary NK cells were stimu-
lated with 100 U/mL IL-2 (NCI preclinical reposi-
tory), 5 ng/mL IL-12 (R&D Systems, cat#219-IL-005),
10 ng/mL IL-15 (NCI preclinical repository), 50 ng/
mL IL-18 (Invitrogen, cat#rcyec-hil18), or 500 U/mL
IFNg (Sigma-Aldrich, cat# I3265) for 24 h. Cell
pellets were collected and processed for rt-qPCR as
described above. Cell lines or expanded primary NK
cells were stimulated with 3 μg/mL CD28 activating
antibody (Biolegend, cat#302933) for 24 h.

Results
CoGAPS identifies known molecular alterations in
response to immunotherapy from scRNA-seq data
Whereas human tumors have limited access for high-
dimensional profiling, mouse models can be readily
used to generate scRNA-seq data to study the tumor
immune microenvironment under a variety of treat-
ment conditions. Analysis of these data is then critical
to determine biological processes associated with treat-
ment perturbations, with unsupervised learning provid-
ing an opportunity for de novo discovery of cell state
transitions related to therapy. To detect latent spaces
(also called “patterns”) that represent transcriptional
signatures across intratumoral immune cells during im-
munotherapy response, we used our non-negative
matrix factorization (NMF) technique, CoGAPS (Fig.
2A) [25]. CoGAPS is an established approach to dissect
transcriptional signatures that dictate cell type identity
(i.e., NK vs. Treg) and cell state (i.e., activated vs. rest-
ing), aiding the evaluation of complex molecular alter-
ations within the tumor immune microenvironment
[33, 34]. By combining CoGAPS with projectR, a trans-
fer learning approach, we can then quickly query for
shared features across independent datasets across
species (Fig. 2A) [7, 25].
To demonstrate the applicability of our pattern detec-

tion and transfer learning approach for cross-species
analysis in the context of immunotherapy response, we
first applied CoGAPS to identify transcriptional re-
sponses induced by ICIs in mouse tumors from a pub-
licly available scRNA-seq dataset including more than
15,000 immune cells isolated from mouse sarcomas [4].
These tumors were treated with a control monoclonal
antibody, anti-PD-1, anti-CTLA-4, or combination anti-
PD-1 and anti-CTLA-4 antibodies (Fig. 2B). A critical
challenge in applying matrix factorization algorithms
such as CoGAPS to scRNA-seq analysis is selecting an
appropriate dimensionality (i.e., number of patterns) to
resolve biological features from the data [35]. Consistent
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Fig. 2 (See legend on next page.)
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with previous studies, running CoGAPS across multiple-
dimensionalities revealed that different levels of bio-
logical complexity were captured at different dimension-
alities [36]. For example, at low dimensionality (3
patterns), CoGAPS separated immune cells into myeloid
and lymphoid lineages (Additional file 1: Fig. S1A).
When dimensionality was increased to 21 patterns, the
myeloid versus lymphoid lineage distinction was pre-
served and additional transcriptional signatures reflect-
ing immune cell type and state were captured (Fig. 2C,
Additional file 2: Table S1).
To identify specific attributes captured by each pat-

tern, we performed gene set analysis using the gene
weights for each pattern as input. We used the hallmark
gene sets from the Molecular Signatures Database
(MSigB) [27] and the PanCancer Immune Profiling gene
panel from Nanostring Technologies to assess the en-
richment of gene sets controlling well-defined biological
processes. Gene set statistics for all patterns are provided
in Additional file 2: Table S2. We found that several
transcriptional signatures identified by CoGAPS were
consistent with ICI-mediated changes previously de-
scribed in the literature. For example, pattern 13 was
enriched in macrophages/monocytes from progressing
tumors treated with control monoclonal antibody (Fig.
2D, E). In contrast, pattern 12 was prevalent in macro-
phages/monocytes from tumors treated with anti-PD-1
(Fig. 2F, G). Macrophages are commonly divided into
two subsets, pro-inflammatory anti-tumor M1 subtype
and anti-inflammatory pro-tumor M2 subtype [37]. Con-
sistent with this, pattern 13, which was enriched in
control-treated tumors, reflected M2 macrophage
polarization, which promotes tumor growth and metas-
tasis (FDR adjusted p-value = 0.018, Additional file 2:
Table S2). In contrast, pattern 12, which was enriched in

anti-PD-1 treated tumors, reflected M1 macrophage
polarization and interferon responses (FDR adjusted p-
value = 0.046, Additional file 2: Table S2). This finding
agrees with a recent study, which showed that anti-PD-1
treatment leads to a functional transition within the
macrophage compartment towards an immunostimula-
tory M1 phenotype [38].

CoGAPS analysis identifies a subset of activated NK cells
in mouse tumors treated with anti-CTLA-4
In addition to the known transcriptional changes result-
ing from ICI treatment shown in Fig. 2, CoGAPS also
identified a transcriptional signature that reflected a sub-
set of activated NK cells—pattern 7 (Fig.3A, B). While
tumors from each treatment group contained NK cells
with elevated levels of pattern 7, there was a significant
enrichment in NK cells from tumors treated with anti-
CTLA-4 (Fig. 3C). To isolate the genes associated with
this pattern, we used the CoGAPS PatternMarker statis-
tic [26]. Instead of being based upon the CoGAPS gene
weights, this statistic computes the unique association of
genes with a particular pattern to isolate the specific set
of genes associated with an inferred biological process to
prioritize genes for validation. PatternMarker analysis
identified 3195 genes associated with pattern 7. Gene set
enrichment analysis on the CoGAPS result object re-
vealed an upregulation of interferon-gamma and IL2-
STAT5 gene sets in pattern 7, which are key pathways
that govern cytotoxicity and maturation in NK cells
(FDR adjusted p-value = 0.013, Additional file 2: Table
S2) [39]. In addition, gene weights for pattern 7 were
highest for markers of NK cell type and function (NKG7,
KLRK1, NCR1, and GZMB) and negative for markers of
T cells (CD3D, CD3G, CD3E, CD4, CD8A, and CD8B1)
(Additional file 1: Fig. S1B).

(See figure on previous page.)
Fig. 2 CoGAPS identifies gene signatures related to immune cell lineage and treatment response in mouse intratumoral immune cell scRNA-seq
data. A Overview of the pipeline to relate preclinical and clinical mechanisms of action of therapy using transfer learning. First, CoGAPS, a non-
negative matrix factorization algorithm is applied to scRNA-seq data of ICI-treated mouse tumors. Matrix factorization algorithms are unsupervised
learning methods that can distinguish low-dimensional gene and cell features (latent spaces) associated with therapeutic responses without prior
knowledge of gene regulation or cell type classification. Next, the transfer learning method projectR, is used to project the transcriptional
signatures representing the latent spaces (or patterns) identified by CoGAPS into an independent dataset of human tumors treated. Finally, the
cell weights representing relative usage of each pattern in the new human dataset can be computationally assessed for relationships to clinical
outcomes and as the basis to prioritize candidates for experimental validation. B UMAP-dimension reduction of droplet-based scRNA-seq of
intratumoral immune cells from ICI-treated mouse sarcomas [4]. Samples are colored by annotated cell types (left) and by treatment (right). C
Hierarchical clustered heatmap of 21 CoGAPS patterns demonstrating segregation by immune cell lineage. Rows are individual cells, with row
annotations designating cell type. Columns represent different CoGAPS patterns. D UMAP-dimension reduction colored by CoGAPS pattern 13
weights illustrates a cell type specific signature within the macrophages/monocytes. E Boxplot of pattern 13 weights in individual macrophage/
monocyte cells, faceted by treatment group. Pattern 13 is associated with cells treated with control monoclonal antibody. Significant differences
in mean pattern 7 weight between treatment groups are indicated by asterisks where p-values < 0.05 = *, < 0.01 = **, and < 0.001 = ***. F
UMAP-dimension reduction colored by CoGAPS pattern 12 weights illustrates a cell type specific signature within the macrophages/monocytes. G
Boxplot of pattern 12 weights in individual macrophage/monocyte cells, faceted by treatment group. Pattern 12 is associated with cells treated
with anti-PD-1. Significant differences in mean pattern 7 weight between treatment groups are indicated by asterisks where p-values < 0.05 = *,
< 0.01 = **, and < 0.001 = ***
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The CoGAPS analysis suggested that pattern 7 identi-
fied NK cells undergoing a cell state change in response
to therapy. To further confirm the CoGAPS inference of
cell state transitions, we also performed pseudotime ana-
lysis on only the NK cells from tumors treated with anti-

CTLA-4 [21]. While this analysis is not a time course of
treatment response, trajectories learned from pseudo-
time analysis have been shown to enable a quantitative
estimation of cellular progression through cell state tran-
sitions associated with dynamic biological processes. The

Fig. 3 CoGAPS and pseudotime analysis reveals a dynamic state change in NK cells during ICI exposure in mouse scRNA-seq data. A UMAP-
dimension reduction colored by CoGAPS pattern 7 weights across all cells (left) and magnified view (right) showing that pattern 7 marks a
population of NK cells delineated in Fig. 2A. B Boxplot of pattern 7 weights across each immune cell type. Cells with high pattern 7 weights are
observed only in NK cells. C Boxplot of pattern 7 weights in individual NK cells faceted by treatment group. Anti-CTLA-4-treated NK cells have
increased pattern 7 weights compared to NK cells treated with other immunotherapies. Significant differences in mean pattern 7 weight between
treatment groups are indicated by asterisks where p-values < 0.05 = *, < 0.01 = **, and < 0.001 = ***. D Pseudotemporal trajectory of anti-CTLA-
4-treated NK cells colored by CoGAPS pattern 7 weight suggesting that anti-CTLA-4 treatment results in NK cell activation. E Heatmap of gene
expression for 148 pattern markers with variable expression as a function of pseudotime. Columns are individual cells, and column annotation
designates pattern 7 weight in each cell. Rows are differentially expressed pattern markers. F Gene expression of selected NK cell activation genes
that are upregulated across pseudotime. Each dot represents a different cell and is colored by CoGAPS pattern 7 weight
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pseudotemporal ordering of anti-CTLA-4-treated NK
cells showed a sequential progression in cellular trajec-
tory (Fig.3D). This pseudotime trajectory was highly cor-
related with the pattern 7 weight identified in each cell
(0.71 spearman correlation). Notably, the trajectory re-
vealed a single transition state in NK cells as a result of
anti-CTLA-4 treatment, with individual cells having
transcriptional profiles that reflect various points along
the trajectory.
Regression analysis to detect genes significantly as-

sociated with changes in pseudotime identified 1968
genes at a q-value threshold of 0.01 in anti-CTLA-4-
treated tumors (Table S3). We then looked for genes
that were both significantly associated with pseudo-
time and patternMarkers of the CoGAPS pattern 7 to
obtain a subset of 148 genes related to NK cell tran-
sitions with anti-CTLA-4 treatment (Fig. 3E). This
analysis identified 148 genes, including markers of
NK cell activation such as perforin, granzymes, and
Ly6a [40] (Fig. 3F). These data support recent find-
ings that NK cells within mouse tumors can be func-
tionally modulated by ICI treatment [41, 42].
In their original study, Gubin et al. [4] used CyTOF, a

mass spectrometry-based flow cytometry method to
measure protein expression in parallel with their
scRNA-seq. By CyTOF, they found that anti-CTLA-4-in-
duced Granzyme B in a population of KLRG1+ NK cells
independently from the scRNA-seq analysis. Still, the re-
lationship between anti-CTLA-4 and NK cell activation
in this subpopulation was not evaluated in that study.
We hypothesized that immune cells from tumors treated
with anti-CTLA-4 in the CyTOF data would have ele-
vated levels of the transcriptional NK cell activation sig-
nature we detected in the scRNA-seq data. To test this
hypothesis, we used our transfer learning method, pro-
jectR [30], to assess the CyTOF data for the 21 patterns
identified by CoGAPS from scRNA-seq. As expected, we
found that pattern 7 was highest in immune cells from
anti-CTLA-4-treated tumors profiled by CyTOF (Add-
itional file 1: Fig. S1C). These findings demonstrate that
(1) CoGAPS identified transcriptional changes in re-
sponse to immunotherapy, which is preserved at the
protein and mRNA level and across technological plat-
forms, (2) CoGAPS identified an NK cell activation sig-
nature in the scRNA-seq data that was missed by the
traditional scRNA-seq analysis methods used in the ori-
ginal study, and (3) ProjectR is capable of identifying
gene expression signatures present in both scRNA-seq
and CyTOF data.

Preclinical NK cell activation signature is associated with
ipilimumab response in metastatic melanoma
To investigate the relevance of the NK cell activation
signature (pattern 7) learned in the preclinical mouse

model to immunotherapy responses in humans, we used
our transfer learning method (projectR), to project two
independent scRNA-seq datasets of ICI-treated meta-
static melanoma patients [5, 6] into the 21 mouse pat-
terns identified by CoGAPS. We selected melanoma
datasets since ICI treatment is widely used in melanoma
patients and because previous studies have shown that
transcriptional signatures of NK cell infiltration correlate
with improved clinical outcomes in melanoma [43].
First, we analyzed a scRNA-seq dataset of ~ 16,000 im-
mune cells isolated from melanoma metastases. Patients
in this study were treated with anti-PD-1, anti-CTLA-4,
or combination anti-PD-1 and anti-CTLA-4 antibodies,
and the biopsies used for scRNA-seq profiling were
taken either before or during treatment [5]. Using the
projected weights of each signature and treatment out-
comes, we evaluated the association of each pattern with
therapeutic response in humans. In pre-treatment biop-
sies, the NK cell activation signature was significantly
higher in anti-CTLA-4 responsive tumors than non-
responsive tumors (p < 1 × 10−15, Additional file 1: Fig.
S2A). This is consistent with our initial finding that NK
cell activation was enriched in mouse tumors treated
with anti-CTLA-4.
Previous scRNA-seq studies that have identified sub-

populations of T cells that express transcripts linked to
the cytotoxic function of NK cells, such as NKT cells
[44, 45]. Consistent with these findings, we observed that
cells expressing canonical NK marker genes (NCR1 and
FCGR3A) were intermixed with cells expressing T cell
marker genes (CD3D) in the lymphocyte cluster (Add-
itional file 1: Fig. S2B). In addition to showing that pat-
tern 7 is specific for NK cell genes (Additional file 1: Fig.
S1B), to further ensure that T and NKT cells were ex-
cluded from analysis and specifically focus on human
NK cells, we performed a gene expression gating strategy
that required the expression of several transcripts related
to NK cell function (NCR1, NKG7, and FCGR3A) and a
lack of the T cell transcripts (CD4, CD3D, and CD3G).
Gating for NK cells confirmed that the NK cell activa-
tion signature was enriched in intratumoral NK cells
isolated from anti-CTLA-4 responsive tumors (Fig. 4A, p
< 1 × 10−8). Because cells were obtained from tumor bi-
opsies prior to the administration of anti-CTLA-4 treat-
ment, this finding suggests that cytotoxic NK cell
infiltration could be predictive of anti-CTLA-4 response.
In patients treated with anti-PD-1, there was no signifi-
cant difference in the NK cell activation signature be-
tween responders and non-responders regardless of
whether biopsies were taken before (Fig. 4A, p > 0.05) or
during (Fig. 4B, p > 0.05) treatment. In contrast, the NK
cell activation signature was significantly enriched in tu-
mors responsive to combination anti-CTLA-4 and anti-
PD-1 taken before (Fig. 4A, p < 0.05) and during (Fig.
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4B, p < 0.01) treatment. Using receiver operating charac-
teristic curve (ROC) analysis, we found that the NK cell
activation signature had a moderate ability to classify
anti-CTLA-4 response (Fig. 4C, AUC = 0.748), suggest-
ing that the NK activation signature has the potential
utility to predict responsiveness to anti-CTLA-4 from
pre-treatment tumor biopsies. These findings indicate
that the presence of active NK cells within tumors is

important to the clinical usage and success of anti-
CTLA-4 therapies.
Although ICI therapy can lead to durable responses in

patients with metastatic melanoma, intrinsic and ac-
quired resistance remain major causes of mortality [46].
To examine the relationship between NK cell activation
and mechanisms of therapeutic resistance, we next pro-
jected the transcriptional patterns into a scRNA-seq

Fig. 4 ProjectR recovers conserved immunotherapy response in intratumoral NK cells from independent human melanoma scRNA-seq datasets. A
Box plot of projected pattern 7 weights across intratumoral NK cells from metastatic melanoma patients prior to ICI treatment [5]. Cells are
colored by therapy and separated by patient response. Increased pattern 7 is significantly associated with NK cells from patients responsive to
anti-CTLA-4 or combined anti-CTLA-4 and anti-PD-1. Significant differences in mean pattern 7 weight between treatment groups are indicated by
asterisks where p-values < 0.05 = *, < 0.01 = **, and < 0.001 = ***. B Box plot of projected pattern 7 weights across intratumoral NK cells from
metastatic melanoma patients after treatment with ICI. Cells are colored by therapy and separated by patient response. Increased pattern 7 is
associated with NK cells from patients responsive to combination anti-CTLA-4 + anti-PD-1. Significant differences in mean pattern 7 weight
between treatment groups are indicated by asterisks where p-values < 0.05 = *, < 0.01 = **, and < 0.001 = ***. C ROC curve for the performance
of pattern 7 weights in predicting response to anti-CTLA-4 prior to the administration of treatment. D Box plot of projected pattern 7 weights
across flow-sorted intratumoral NK cells from metastatic melanoma tumors that were unresponsive ICI (intrinsic resistance) or developed acquired
resistance after a period of initial response [6]. The dashed line indicates the average maximum value for pattern 7 across treatment groups. NK
cells with elevated pattern 7 weights are seen in patients that had an initial response to ICI, with the highest observed weights from a patient
that responded to anti-CTLA-4. E Box plot of projected pattern 7 weights across NK cells isolated from peripheral blood of metastatic melanoma
patients that had no response to ICI (intrinsic resistance) or developed acquired resistance after a period of initial response. The dashed line
indicates the average maximum value for pattern 7 from intratumoral NK cells across treatment groups. Elevated pattern 7 weights are not
detected in circulating NK cells, regardless of response.
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dataset of NK cells isolated by flow cytometry from
matched melanoma metastatic lesions and blood sam-
ples of patients that had progressed after immunother-
apy [6]. This dataset included two patients that had an
initial response to ICI (acquired resistance), two patients
that failed to respond to ICI (intrinsic resistance), and
one patient that was not given ICI (untreated). We
found high levels of the NK cell activation signature in a
subset of intratumoral NK cells from the two patients
who had an initial response to ICI (Fig. 4D). Consistent
with our results which indicate that the NK cell activa-
tion signature is enriched in anti-CTLA-4 responsive tu-
mors, the highest levels of the NK cell activation
signature were found in NK cells from the patient re-
sponsive to anti-CTLA-4 (ipilimumab). Elevated NK cell
activation signature was also found in the patient re-
sponsive to combination treatment with anti-PD-1 and
oncolytic virus (pembrolizumab + TVEC). Notably, these
observations were specific to intratumoral NK cells, as
the NK cell activation signature was detected only at
very low levels in NK cells isolated from matched per-
ipheral blood samples (Fig. 4E). This result indicates that
anti-CTLA-4 treatment leads to NK cell activation spe-
cifically within the tumor microenvironment in humans,
consistent with observations in mice [42].

Human NK cells express CTLA-4, which is bound by
ipilimumab
CTLA-4 is an important regulator of T cells, and there
is growing evidence suggesting that CTLA-4 regulates
other human immune cell types, including B cells [47,
48], monocytes [49], and dendritic cells [50]. While our
computational analysis suggests a functional role of
CTLA-4 in human NK cells, expression of CTLA-4 in
human NK cells is controversial in the literature; most
studies indicate that human NK cells do not express
CTLA-4 [42, 51–53]. Our computational association of
the intratumoral NK cell activation in response to anti-
CTLA-4 treatment suggests that NK cell activity may be
modulated directly by CTLA-4 treatment and that
CTLA-4 may function as an NK cell immune check-
point—similar to its role in T cells. To investigate this
possibility, we used scRNA-seq data to assess the expres-
sion of CTLA-4 transcripts in NK cells and the relation-
ship between CTLA-4 expression and expression of NK
cell activation markers. Indeed, we found clusters of
intratumoral NK cells from mice and humans that ex-
press CTLA-4 and markers of NK cell activation, includ-
ing GZMB and NKG7 (Fig. 5A). Given that CTLA-4
transcripts were detectable in a handful of NK cells,
CTLA-4 may be expressed at low to moderate levels and
result in poor capture efficiency during scRNA-seq [54].
These technical limitations make the use of in vitro
techniques necessary to validate computational findings.

Therefore, we turned to molecular biology to further in-
vestigate the transcriptional signature of NK cell
activation.
To confirm that human NK cells express CTLA-4, we

directly tested four human NK cell lines (NK-92, NKL,
YT, and KHYG-1) for CTLA-4 expression at the mRNA
and protein level and compared to a negative control
CTLA4-null cell line (PANC-1) and positive control T
cell lines (Jurkat, CEM, HuT78). While all four cell lines
appeared negative for CTLA-4 by flow cytometry (Add-
itional file 1: Fig. S2A), all NK cell lines revealed robust
CTLA-4 expression determined by western blot and
qRT-PCR (Fig. 5B, C). CTLA-4 is known to be expressed
on several tumor-derived human cell lines [55, 56]. To
exclude the possibility that this observation was specific
to malignant NK cells, we assessed CTLA-4 expression
in unstimulated ex vivo CD56+ NK cells isolated from
healthy human donor PBMCs. Consistent with the re-
sults in NK cell lines, CTLA-4 was undetectable by flow
cytometry (Additional file 1: Fig. S2B). However, western
blot and rt-qPCR confirmed that NK cells from each
donor constitutively expressed CTLA-4 (Fig. 5D, E).
Since the western blots of both the positive control T

cell lines and NK cells shows two bands—one represent-
ing the ~ 95 kDa dimer that is surface expressed and
one representing the ~ 30 kDa monomer that is intracel-
lular—we hypothesized that antibody-specific limitations
were precluding successful detection of CTLA-4 on the
NK cell surface by flow cytometry. We, therefore, turned
to an antibody-independent means of detecting surface
expression—surface protein biotinylation—to confirm
that NK cells express CTLA-4 on the surface. We bio-
tinylated cell surface proteins and then excluded them
from the cell lysate via magnetic separation. Using the
NK cell line NK92 and healthy donor NK cells, we deter-
mined that CTLA-4 dimers and monomers are present
in total cell lysate, but the CTLA-4 dimers are absent
from the intracellular protein lysate, confirming that NK
cells express CTLA-4 dimers on their surface (Fig. 5F).
In T cells, CTLA-4 competes with co-stimulatory

receptor CD28 for B7 ligands. When CTLA-4 outcom-
petes CD28 for B7 binding, it prevents CD28 co-
stimulatory signaling and instead provides inhibitory
signaling. Anti-CTLA-4 treatment results in T cell acti-
vation by inhibiting the inhibitor, by blocking CTLA-4-
B7 interactions and promoting CD28-B7 interactions.
To determine if CTLA-4 could be functioning similarly
in NK cells, we tested NK cells for CD28 and CD28H
expression. Consistent with previous reports, we found
that some NK cell lines and donor NK cells expressed
CD28 and CD28H [57] by flow cytometry and qRT-PCR
(Additional file 1: Fig. S4). Thus, human NK cells ex-
press both CTLA-4 and CD28, supporting a similar role
for these receptors in T cells and NK cells.
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Fig. 5 (See legend on next page.)
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Ipilimumab binds to CTLA-4 expressed on the NK cell
surface independent of CD16
We next wanted to determine if the anti-CTLA-4 anti-
body, ipilimumab, was capable of binding to CTLA-4
expressed on the NK cell surface. To do so, we fluores-
cently labeled anti-CTLA-4 (Ipilimumab) to probe for
ipilimumab binding to the NK cell surface by immuno-
fluorescence microscopy. One potential complication is
a nonspecific binding of ipilimumab to NK cells. Human
NK cells express antibody receptors (e.g., Fc receptor
CD16) which can bind to the constant region of an anti-
body regardless of the antibody’s specificity [58].. To ex-
clude the possibility of nonspecific ipilimumab-NK cell
interactions, we used the human NK cell line NK-92,
which lacks generic antibody receptors (i.e., CD16) (Fig.
5G). Immunofluorescence imaging demonstrated that
fluorescently labeled anti-CTLA-4, but not the IgG
control, was capable of binding to NK-92 through
recognition of CTLA-4 on the cell surface (Fig. 5H).
The specificity of the stain was confirmed using the
CTLA-4 null line PANC-1 (Additional file 1: Fig.
S2E). We saw abundant surface expression of CTLA-
4 by immunofluorescence, confirming the results
shown in Fig. 5F. To the best of our knowledge, this
is the first demonstration that anti-CTLA-4 (ipilimu-
mab) can directly interact with human NK cells via a
CD16-independent mechanism.

NK cell activation regulates CTLA-4 expression
In T cells, CTLA-4 expression is modulated in response
to T cell activation via CD28 and T cell receptor signal-
ing [59]. To investigate if in vitro NK cell activation
would similarly modify CTLA-4 expression in NK cells,
we exposed NK cells to a variety of cytokines (IL-2, IL-
12, IL-15, IL-18) that activate NK cells and alter NK cell
expression of other immune checkpoints (i.e., PD-1) [60,
61] (Fig. 6A). Human NK cells, with the exception of
NK cell line NK-92, had a drastic reduction in CTLA-4

after 24-h exposure to IL-2. IL-15 also caused a reduc-
tion in CTLA-4 expression in all NK cells tested except
NKL. Alternatively, IL-12 and IL-18 increased CTLA-4
expression in a subset of NK cell lines, including primary
donor NK cells. The variability in CTLA-4 expression in
response to cytokine stimulation may be attributed to
intrinsic differences in the NK cell lines, which can
alter their response to certain stimuli. For instance,
the NK92 cell line does not express any of the KIR
family of inhibitory receptors; therefore, this cell line
is thought to be hyper-sensitive to cell-mediated
activation [62].
Target cell recognition is another means to activate

NK cells. Since cytokine-activated and target cell-
activated NK cells have distinct transcriptional pheno-
types [63], we also investigated target cell-mediated NK
cell activation on NK cell CTLA-4 expression by expos-
ing NK cells to engineered target cells (K562-4-1BB-
mbIL-21 cells) (Fig. 6B). Although we saw divergent
responses in the primary NK cells from two donors, tar-
get cell exposure clearly modulated CTLA-4 expression.
These data demonstrate that although responses are
variable, human NK cell activation, via cytokine and
target cell stimulation, alters NK cell expression of
CTLA-4. Combined with the observation that anti-
CTLA-4 antibodies bind human NK cells, these results
suggest CTLA-4 may be an NK cell checkpoint and
drive the computationally identified signature of NK cell
activation in anti-CTLA-4 responsive tumors. Taken to-
gether, these results confirm the utility of CoGAPS and
projectR to identify conserved biological processes be-
tween preclinical models and human patients that con-
tribute to clinical outcomes.

Preclinical NK cell activation signature is associated with
overall survival in metastatic melanoma patients
We hypothesized that the CoGAPS identified NK cell
activation signature might be detectable in untreated

(See figure on previous page.)
Fig. 5 CTLA-4 is expressed by both human NK cell lines and healthy human donor-derived NK cells. A UMAP-dimension reduction with cells
colored by single-cell gene expression for CTLA-4 and representative immune activation genes in mouse (left) and human (right) intratumoral NK
cells. The pattern of CTLA-4 expression is consistent with the reduced ability of scRNA-seq to capture low to moderately expressed genes. B
Western blot demonstrating CTLA-4 expression in human NK cell lines. Representative of two independent experiments. C Quantitative real-time
PCR (qRT-PCR) analysis of total CTLA-4 expression (both isoforms) in a CTLA-4 null line (PANC-1), T cell lines (Jurkat, CEM, HuT78), and NK cell lines
(NK92, NKL, YT, KHYG-1). p-value < 0.001 = **** as determined by unpaired, two-tailed t-test. D qRT-PCR demonstrating CTLA-4 expression in
CD56+ selected ex vivo unstimulated NK cells derived from healthy human donors. E Western blot of CTLA-4 expression in CD56+ selected
ex vivo unstimulated NK cells derived from healthy human donors. F Western blot of total protein (T) and intracellular (IC) protein isolated from
human NK cell line NK-92 and unstimulated primary human NK cells using cell surface protein biotinylation for exclusion of surface proteins
demonstrating surface expression of CTLA-4 dimers and intracellular expression of CTLA-4 monomers. G Flow cytometry demonstrating NK-92
does not express antibody receptor CD16. Positive control was the NK-92 line that had been transfected with a CD16 expressing plasmid, NK-92-
CD16v. H Immunofluorescent images of NK-92 cells stained with Dylight550-labeled ipilimumab demonstrating that ipilimumab binds to the NK
cell surface. Blue staining indicates DAPI. Shown are representative images of a single field of view taken via confocal microscopy (magnification,
63×; zoom, 3×)
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tumors that naturally elicit an anti-tumor NK cell re-
sponse, such as melanoma metastases [6]. In addition to
the ability to relate biological processes across species,
our transfer learning approach can be used to compare
across sequencing platforms. Therefore, to investigate if
NK cell activation was associated with clinical outcomes
in untreated cancer patients, we used projectR to project
bulk RNA-seq data from TCGA of 9507 human tumors
representing 32 solid tumor types into the 21 CoGAPS
patterns originally identified in scRNA-seq [18]. An as-
sociation between CoGAPS pattern weight and overall
survival was determined using a multivariate Cox pro-
portional hazards model, adjusted for age. In melanoma,
pattern 7 weight in metastatic lesions (n = 368) was as-
sociated with a longer overall survival (Fig. 7A, HR =
0.99, p = 0.017). Pattern 7 weight in primary melanoma
lesions (n = 103) was not associated with any statistically
significant difference in overall survival (Additional file
1: Fig. S5). These results show that NK cell activation is
significantly associated with overall survival in untreated
metastatic melanoma patients. The association between
our NK cell activation pattern and clinical outcomes in
metastatic lesions is consistent with the role of NK cells
in controlling cancer progression and metastasis [64].

When fitting separate Cox proportional hazards
models by cancer type across all primary tumor types
and adjusting for age, head and neck squamous cell car-
cinoma (HNSCC), kidney chromophobe (KICH), and
mesothelioma (MESO) showed a significant association
between pattern 7 weight and overall survival (Fig. 7B).
Consistent with this, several studies have similarly found
an association between infiltrating NK cell abundance or
function and overall survival in solid tumor types, in-
cluding HNSCC [65–70]. Interestingly, pattern 7 weight
in primary pancreatic adenocarcinoma (PAAD) was as-
sociated with a significantly worse overall survival. Not-
ably, studies of the association between NK cells and
disease prognosis in PAAD have had inconsistent find-
ings [71–74]. The association between pattern 7 and
worse overall survival in PDAC may be driven by abnor-
mal NK activation or dysregulation of the innate im-
mune system within some lesions. As there is no
universal cell type marker to define NK cells and differ-
ent subsets express standard marker genes differently,
studies investigating the relationship between NK cell in-
filtration and overall survival are limited in their ability
to assess the relationship between overall survival and
the abundance of functional subpopulations [70]. Bulk

Fig. 6 NK cell activation regulates CTLA-4 expression. A Effect of 24-h stimulation with IL-2, IL-12, IL-15, and IL-18 on NK cell CTLA-4 expression as
determined by qRT-PCR (n = 3 for NK cell lines, 2 for donor NK cells; p-values < 0.01 = ** and < 0.0001 = **** when comparing ΔCt for that cell
after exposure to cytokine to that cell line unexposed using an unpaired two-tailed t-test). B Effect of target cell exposure (K562-4-1BB-mbIL-21)
on NK cell CTLA-4 expression as determined by qRT-PCR (n = 3, p-value < 0.0001 = **** when comparing ΔCt using an unpaired
two-tailed t-test)
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Fig. 7 Preclinical NK activation signature is associated with overall survival in human melanoma. A Coefficients of an age-adjusted multivariate
Cox proportional hazards regression model that relates CoGAPS patterns and overall survival in metastatic melanoma lesions from TCGA. Point
size scaled to the coefficient’s p-value. Red points indicate patterns with significant coefficients. A positive coefficient indicates a worse overall
survival and a negative coefficient indicates a better prognosis for the associated variable. B Coefficients of an age-adjusted multivariate Cox
proportional hazards regression model that relates CoGAPS pattern 7 and overall survival across 32 primary tumor types from TCGA. Point size
scaled to the coefficient’s p-value. Red points indicate patterns with significant coefficients. C Boxplot of CIBERSORT scores estimating the
abundance of resting and activated NK cells from TCGA RNA-seq data by tumor subtype in TCGA. D Bar plot of Spearman correlation coefficients
between CTLA-4 and CIBERSORT cell type score for immunogenic cancers. CTLA-4 expression is positively correlated with estimation of activated
NK cells from TCGA RNA-seq data. Significant correlations for NK scores and CTLA-4 expression are indicated by asterisks where p-values < 0.05 =
*, < 0.01 = **, and < 0.001 = ***
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RNA-seq similarly suffers from a limited ability to delin-
eate cell types and states from aggregate transcriptional
data. In contrast, our results demonstrate we can com-
putationally project transcriptional signatures identified
from scRNA-seq data into bulk RNA-seq data to rapidly
detect immune cell states shared between distinct spe-
cies and data modalities. In addition, these results con-
firm that NK cell activation is associated with overall
survival in metastatic melanoma [43].

CTLA-4 expression is positively correlated with the
infiltration of active NK cells in immunogenic human
tumors
Given that the NK cell activation signature was enriched
in anti-CTLA-4-treated mouse tumors, we hypothesized
that there may be a correlation between CTLA-4 expres-
sion and intratumoral NK cell content. To explore this
hypothesis, we used bulk RNA-seq data from TCGA
then applied CIBERSORT, a widely used computational
approach that infers immune cell content from bulk
RNA-seq data [75]. In this analysis, we assessed six im-
munogenic solid tumor types: skin cutaneous melanoma
(SKCM), kidney renal clear cell carcinoma (KIRC), cer-
vical kidney renal papillary cell carcinoma (KIRP), squa-
mous cell carcinoma of the lung (LUSC), lung
adenocarcinoma (LUAD), and bladder carcinoma
(BLCA). When running CIBERSORT, we used the LM22
signature matrix designed by Newman et al. [75] to esti-
mate the relative fraction of 22 immune cell types within
input mixture samples, including an estimation of rest-
ing and activated NK cell proportions (Fig. 7C). Correl-
ation analysis across the 21 CoGAPS patterns for the
genes present in both the CoGAPS amplitude matrix
and the LM22 signature matrix (n = 391) found that pat-
tern 7 had the highest correlation (Pearson = 0.497) to
the CIBERSORT NK cell activation signature (Table S4),
further supporting the association between pattern 7
and NK cell activation. Correlation analysis between
CTLA-4 expression and CIBERSORT cell type estima-
tion revealed that the direction of correlation in NK cells
was dependent upon the activation state (Fig. 7D, Table
S5). Across several tumor types, the proportion of acti-
vated NK cells was positively correlated with CTLA-4
expression, while the proportion of resting NK cells was
negatively correlated. CTLA-4 expression was negatively
correlated with estimated proportions of resting NK cells
in SKCM (p < 1 × 10−4), BLCA (p < 1 × 10−3), LUSC (p
< 1 × 10−2), KIRP (p < 1 × 10−2), and KIRC (p < 1 ×
10−9). On the other hand, estimated proportions of acti-
vated NK cells were positively correlated with CTLA-4
expression in SKCM (p < 1 × 10−6), BLCA (p < 1 ×
10−2), LUSC (p < 0.05), KIRP (p < 0.05), and KIRC (p <
1 × 10−2). As expected, CTLA-4 expression was also
positively correlated with the estimated proportions of

regulatory T cells (Tregs) in each tumor type (Table S5).
This analysis complements our experimental results and
further supports a relationship between NK cell activa-
tion, CTLA-4 expression, and clinical outcomes in hu-
man tumors.

Discussion
In this application of matrix factorization and transfer
learning to cancer immunotherapy, we demonstrate both
computationally and experimentally that this approach
can elucidate complex immunotherapy responses from
scRNA-seq data that are conserved across species. Spe-
cifically, we show that our matrix factorization approach
(CoGAPS) detected a signature of intratumoral NK cell
activation in anti-CTLA-4-treated mice which our trans-
fer learning method (projectR) associated with positive
clinical outcomes in metastatic melanoma. We interro-
gate and validate this NK cell activation signature in sev-
eral datasets, including proteomics (CyTOF), bulk RNA-
seq (TCGA), and additional scRNA-seq. Ultimately, the
application of these computational techniques identified
novel biology—that human NK cells express CTLA-4,
bind anti-CTLA-4 (ipilimumab), and NK cell activation
associates with anti-CTLA-4 activity in human tumors.
Both CoGAPS and projectR offer unique advantages to

interpreting complex tumor immune cell scRNA-seq
data. For instance, traditional clustering methods such
as those employed by Gubin et al. [4] group cells accord-
ing to transcriptional signatures that reflect cell type.
However, a single cell’s transcriptional profile represents
more than just cell type, encompassing additional cellu-
lar processes such as activation, exhaustion, and cell sig-
naling, which are not necessarily captured by traditional
clustering approaches. Identifying these cellular pro-
cesses is particularly important when studying immune
cells within the tumor microenvironment, where cells
may undergo stimulation or dysregulation. In the
scRNA-seq data, Gubin et al. [4] did not detect NK cell
activation in anti-CTLA-4-treated tumors; however,
their subsequent CyTOF analysis revealed prominent
upregulation of NK cell granzyme expression specific to
anti-CTLA-4 treatment [4]. In contrast, our matrix
factorization method, CoGAPS, was able to identify NK
cell activation in response to treatment directly—without
the need for clustering, differential expression analyses,
or additional technologies— highlighting the advantage
of CoGAPS compared to standard analysis methods
when studying tumoral immune cells. Using projectR to
project the NK cell activation signature into several add-
itional datasets allowed us to ultimately confirm that the
transcriptional signature we identified in mice was clin-
ically relevant in humans as well. This is particularly im-
pressive when you factor in the known differences
between mouse and human NK cell surface receptors
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and markers [76]. In this application, we use gene signa-
tures from CoGAPS for projection and transfer learning.
Other transfer learning methods have been developed to
relate features in a target scRNA-seq dataset to a refer-
ence atlas, often relying on non-linear methods for fea-
ture identification [77, 78]. In contrast to these other
approaches, our projectR software is robust for transfer
learning from single-cell data (e.g., PCA, clustering, and
other forms of linear matrix factorization) and may cap-
ture additional features of cell state transitions based
upon all of these methodologies [7, 30]. Future exten-
sions to projectR are needed to enable transfer learning
from an ensemble of features across these latent space
methods and from emerging non-linear methods for in-
ference of more complex cell state transitions and gene
regulatory networks.
The CoGAPS analysis of the scRNA-seq data from

an immunotherapy-treated mouse model identified
several immune cell states associated with treatment
status, including the myeloid compartment. Notably,
CoGAPS detected an M2 macrophage signature
enriched in untreated mice and an M1 macrophage
signature enriched in tumors from anti-PD-1 treated
mice (Fig. 2D–G). We chose to focus our experimen-
tal validation on the NK cell activation signature
identified by CoGAPS (pattern 7) for several reasons:
(1) pattern 7 was the most clearly associated with a
specific cell type and treatment, (2) increased expres-
sion of NK cell activation markers had been noted in
anti-CTLA-4-treated mice from the original CyTOF
analysis [4], (3) there is growing evidence that CTLA-
4 is expressed by non-T cell human immune cell
types [47–50], and (4) recent work found that human
NK cells express PD-1 and are modulated by anti-
PD-1 therapy [79, 80]. Therefore, we hypothesized
that CTLA-4 was similarly expressed by human NK
cells and activated by anti-CTLA-4 antibodies.
In addition to the experimental validation, our compu-

tational analysis with transfer learning demonstrated that
the NK cell activation signature is associated with im-
proved overall survival and anti-CTLA-4 response in
melanoma patients. This signature was detected in anti-
CTLA-4 responsive metastatic melanoma prior to the
administration of treatment and correlated with re-
sponse to therapy. This leads us to hypothesize that the
presence of activated NK cells already within tumors im-
proves tumor clearance mediated by anti-CTLA-4. The
NK cell activation signature was also elevated in a pa-
tient that initially responded to a combination of anti-
PD-1 and oncolytic virus therapy. This observation is
consistent with previous studies showing that infection
of tumors with oncolytic viruses can activate NK cells
and stimulate NK-mediated anti-tumor immunity [81].
We note that this observation was specific to

intratumoral NK cells and not present in circulating NK
cells (Fig. 4E), indicating that approaches using periph-
eral blood to transcriptionally profile NK cell activation
with respect to clinical outcomes may be limited. Future
transfer learning analyses on large cohort studies of anti-
CTLA-4-treated tumors with genomics data could fur-
ther delineate the role of tumor NK cell activation as a
potential predictive biomarker. However, these datasets
are currently lacking in the literature, limiting our ability
for such computational-driven biomarker analysis in this
current study.
While our study is computationally focused, the ap-

plication of our transfer learning pipeline for cross-
species analysis to cancer immunotherapy still sug-
gests that the role of NK cells in anti-CTLA-4 re-
sponse is preserved between preclinical mouse models
and human tumors. Despite growing evidence for the
role of checkpoint receptors in NK cell-mediated
anti-tumor responses, the expression of CTLA-4 in
NK cells has been disputed in the literature for both
mice and humans. Although mouse NK cells have
been shown to inducibly express CTLA-4 in response
to IL-2 [60], a recent study was unable to detect
CTLA-4 on the surface of intratumoral mouse NK
cells [42]. A study in humans also reported that NK
cells from healthy donors do not express CTLA-4
[51]. Contrary to these earlier reports, our results
demonstrate CTLA-4 is constitutively expressed by
circulating healthy human donor NK cells and human
NK cell lines. One possible explanation for why previ-
ous studies have failed to identify the expression of
CTLA-4 by human NK cells is the reliance on flow
cytometry in these studies. Flow cytometry can be
limited by challenges related to the generation of
antibodies and further complicated by the rapid sur-
face expression dynamics of CTLA-4 [82]. In support
of this explanation, we too fail to detect intracellular
or surface CTLA-4 expression when using flow cy-
tometry (Additional file 1: Fig. S3A and B), even
though we are able to unequivocally demonstrate
CTLA-4 expression at the RNA and protein level by
qRT-PCR and western blot in ex vivo unstimulated
healthy donor NK cells (Fig. 5B–E), as well as surface
expression using immunofluorescence and biotinyl-
ation (Fig. 5G). Consistent with previous studies [83,
84], we show that human NK cells express CD28 and
CD28H (Additional file 1: Fig. S4), a co-stimulatory
receptor that competes with CTLA-4 for the binding
of B7 ligands. The expression of B7 on tumor cells
also enhances NK recognition and lysis of tumors
through CD28-B7 interactions [83–89]. In addition,
we show that CTLA-4 expression by human NK cells
cultured in vitro is modulated in response to NK cell
activation (Fig. 6). These findings suggest that CTLA-
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4 may have similar functions in NK cells and effector
T cells [59]. Taken together, these results build upon
previous studies that highlight a relationship between
NK cells and anti-CTLA-4 response in humans. In
melanoma patients treated with anti-CTLA-4, a
higher percentage of circulating mature NK cells is
correlated with improved overall survival, and NK
cells isolated from responsive patients have increased
cytolytic activity compared to NK cells isolated from
non-responders [90]. In B16 melanoma models, NK
cells and CD8+ T cells synergistically clear tumors in
response to anti-CTLA-4 and IL-2 treatment [91].
Furthermore, anti-CTLA-4 has been shown to in-
crease transcriptional markers of NK cell cytotoxic
activity in CT26 colon carcinoma tumors [42]. While
future mechanistic studies are needed to fully eluci-
date the specific function(s) of CTLA-4 in NK cell
biology, these findings support the computationally
driven translational approach employed in this study.

Conclusions
As scRNA-seq datasets of immunotherapy-treated tu-
mors become increasingly prevalent in cancer research,
we need appropriate computational tools that can delin-
eate actionable cellular mechanisms of action from these
data. This inference can play a critical role in advancing
basic science in the preclinical research pipeline, where
relating findings to human datasets enables translation
for precision immunotherapy strategies. This work de-
scribes a framework using latent space discovery through
matrix factorization and transfer learning for cross-
species data analysis which allows the integration of pre-
clinical and clinical genomics datasets. We provide a
powerful method for extrapolating relevant information
while avoiding the unique biases of individual technolo-
gies (i.e., dropout in scRNA-seq, biased selection of
genes in CyTOF, or aggregate transcriptional profiles in
bulk RNA-seq). In addition, our approach enables the
comparison of different tumor types and treatment con-
ditions. While our study focused on the relation of pre-
clinical models to human tumors, this approach can be
readily applied within human tumors to relate mecha-
nisms across tumor subtypes and can be broadly used in
other disease contexts as well as drug repurposing. The
ability to rapidly identify conserved therapeutic re-
sponses between mice and humans will help bridge basic
science and clinical research to improve patient
outcomes.
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